You are here

An investigation of membrane transporter proteins in the distal vertebrate retina: excitatory amino acid transporters and sodium potassium chloride cotransporters

Download pdf | Full Screen View

Date Issued:
2014
Summary:
Neurons are able to maintain membrane potential and synaptic integrity by an intricate equilibrium of membrane transporter proteins and ion channels. Two membrane proteins of particular importance in the vertebrate retina are the excitatory amino acid transporters (EAATs) which are responsible for the reuptake of glutamate into both glial and neuronal cells and the sodium potassium chloride cotransporters (NKCCs) that are responsible for the uptake of chloride ions into the cell. NKCCs are electro-neutral with the uptake of 2 Cl- coupled to an exchange of a potassium and Na+ ion into the cells. Therefore, there is little change of cell membrane potential in the action of NKCCs. In this study the localization and function of EAATs in the distal retina is investigated. Whole cell patch clamp recordings in lower vertebrate retina have demonstrated that EAAT2 is the main synaptic EAATs in rod photoreceptors and it is localized to the axon terminals. Furthermore, the action of the transporter seems to be modified by intracellular calcium concentration. There is also evidence that EAAT2 might be regulated by feedback from the neuron network by glycinergic and GABAergic mechanisms. The second half of this study investigates expression of NKCCs in the retina by western blot analysis and quantitative polymerase chain reaction. There are two forms of NKCCs, NKCC1 and NKCC2. NKCC1 is mostly expressed in the central nervous system and NKCC2 was thought to only be expressed in the kidneys. NKCC1 is responsible for the majority of chloride uptake into neuronal and epithelial cells and NKCC1 is expressed in the distal retina where photoreceptors synapse on second order horizontal and bipolar cells. This study found the expression of NKCC1 in the distal retina to be regulated by temporal light and dark adaptation. Light adaptation increased phosphorylated NKCC1 expression (the active form of the cotransporter). The increase in NKCC1 expression during light adaptation was modulated by dopamine. Specifically, a D1 receptor agonist increased phosphorylated NKCC1 expression. Dopamine is an essential chemical and receptor known for initiating light adaptation in retina. Finally, an NKCC1 knockout mouse model was examined and it revealed that both forms of NKCC are expressed in the vertebrate retina.
Title: An investigation of membrane transporter proteins in the distal vertebrate retina: excitatory amino acid transporters and sodium potassium chloride cotransporters.
98 views
27 downloads
Name(s): Purpura, Lauren Angeline, author
Shen, Wen, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Biological Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2014
Date Issued: 2014
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 65 p.
Language(s): English
Summary: Neurons are able to maintain membrane potential and synaptic integrity by an intricate equilibrium of membrane transporter proteins and ion channels. Two membrane proteins of particular importance in the vertebrate retina are the excitatory amino acid transporters (EAATs) which are responsible for the reuptake of glutamate into both glial and neuronal cells and the sodium potassium chloride cotransporters (NKCCs) that are responsible for the uptake of chloride ions into the cell. NKCCs are electro-neutral with the uptake of 2 Cl- coupled to an exchange of a potassium and Na+ ion into the cells. Therefore, there is little change of cell membrane potential in the action of NKCCs. In this study the localization and function of EAATs in the distal retina is investigated. Whole cell patch clamp recordings in lower vertebrate retina have demonstrated that EAAT2 is the main synaptic EAATs in rod photoreceptors and it is localized to the axon terminals. Furthermore, the action of the transporter seems to be modified by intracellular calcium concentration. There is also evidence that EAAT2 might be regulated by feedback from the neuron network by glycinergic and GABAergic mechanisms. The second half of this study investigates expression of NKCCs in the retina by western blot analysis and quantitative polymerase chain reaction. There are two forms of NKCCs, NKCC1 and NKCC2. NKCC1 is mostly expressed in the central nervous system and NKCC2 was thought to only be expressed in the kidneys. NKCC1 is responsible for the majority of chloride uptake into neuronal and epithelial cells and NKCC1 is expressed in the distal retina where photoreceptors synapse on second order horizontal and bipolar cells. This study found the expression of NKCC1 in the distal retina to be regulated by temporal light and dark adaptation. Light adaptation increased phosphorylated NKCC1 expression (the active form of the cotransporter). The increase in NKCC1 expression during light adaptation was modulated by dopamine. Specifically, a D1 receptor agonist increased phosphorylated NKCC1 expression. Dopamine is an essential chemical and receptor known for initiating light adaptation in retina. Finally, an NKCC1 knockout mouse model was examined and it revealed that both forms of NKCC are expressed in the vertebrate retina.
Identifier: FA00004224 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2014.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Biological transport
Carrier proteins
Cellular signal transduction
Neural receptors
Retina -- Cytology
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004224
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004224
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.