You are here

Empirical beam angle optimization for lung cancer intensity modulated radiation therapy

Download pdf | Full Screen View

Date Issued:
2014
Summary:
Empirical methods of beam angle optimization (BAO) are tested against the BAO that is currently employed in Eclipse treatment planning software. Creating an improved BAO can decrease the amount of time a dosimetrist spends on making a treatment plan, improve the treatment quality and enhance the tools an inexperienced dosimetrist can use to develop planning techniques. Using empirical data created by experienced dosimetrists from 69 patients treated for lung cancer, the most frequently used gantry angles were applied to four different regions in each lung to gather an optimal set of fields that could be used to treat future lung cancer patients. This method, given the moniker FAU BAO, is compared in 7 plans created with the Eclipse BAO choosing 5 fields and 9 fields. The results show that the conformality index improved by 30% or 3% when using the 5 and 9 fields. The conformation number was better by 12% from the 5 fields and 9% from the 9 fields. The organs at risk (OAR) were overall more protected to produce fewer nonstochastic effects from the radiation treatment with the FAU BAO.
Title: Empirical beam angle optimization for lung cancer intensity modulated radiation therapy.
165 views
48 downloads
Name(s): Doozan, Brian, author
Pella, Silvia, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Physics
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2014
Date Issued: 2014
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 98 p.
Language(s): English
Summary: Empirical methods of beam angle optimization (BAO) are tested against the BAO that is currently employed in Eclipse treatment planning software. Creating an improved BAO can decrease the amount of time a dosimetrist spends on making a treatment plan, improve the treatment quality and enhance the tools an inexperienced dosimetrist can use to develop planning techniques. Using empirical data created by experienced dosimetrists from 69 patients treated for lung cancer, the most frequently used gantry angles were applied to four different regions in each lung to gather an optimal set of fields that could be used to treat future lung cancer patients. This method, given the moniker FAU BAO, is compared in 7 plans created with the Eclipse BAO choosing 5 fields and 9 fields. The results show that the conformality index improved by 30% or 3% when using the 5 and 9 fields. The conformation number was better by 12% from the 5 fields and 9% from the 9 fields. The organs at risk (OAR) were overall more protected to produce fewer nonstochastic effects from the radiation treatment with the FAU BAO.
Identifier: FA00004280 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2014.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Cancer -- Radiotherapy
Image guided radiation therapy
Lung cancer -- Treatment
Medical physics
Medical radiology -- Data processing
Medicine -- Mathematical models
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004280
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004280
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.