You are here

Generating space-time hypotheses in complex social-ecological systems

Download pdf | Full Screen View

Date Issued:
2014
Summary:
As ecosystems degrade globally, ecosystem services that support life are increasingly threatened. Indications of degradation are occurring in the Northern Indian River Lagoon (IRL) estuary in east central Florida. Factors associated with ecosystem degradation are complex, including climate and land use change. Ecosystem research needs identified by the Millennium Ecosystem Assessment (MA) include the need to: consider the social with the physical; account for dynamism and change; account for complexity; address issues of scale; and focus on ecosystem structure and process. Ecosystems are complex, self-organizing, multi-equilibrial, non-linear, middle-number systems that exist in multiple stable states. Results found are relative to the observation and the frame of analysis, requiring multi-scaled analytical techniques. This study addresses the identified ecosystem research needs and the complexity of the associated factors given these additional constraints. Relativity is addressed through univariate analysis of dissolved oxygen as a measure of the general health of the Northern IRL. Multiple spatial levels are employed to associate social process scales with physical process scales as basin, sub-basins, and watersheds. Scan statistics return extreme value clusters in space-time. Wavelet transforms decompose time-scales of cyclical data using varying window sizes to locate change in process scales in space over time. Wavelet transform comparative methods cluster temporal process scales across space. Combined these methods describe the space-time structure of process scales in a complex ecosystem relative to the variable examined, where the highly localized results allow for connection to unexamined variables.
Title: Generating space-time hypotheses in complex social-ecological systems.
319 views
235 downloads
Name(s): Forbes, Dolores J., author
Xie, Zhixiao, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Geosciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2014
Date Issued: 2014
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 189 p.
Language(s): English
Summary: As ecosystems degrade globally, ecosystem services that support life are increasingly threatened. Indications of degradation are occurring in the Northern Indian River Lagoon (IRL) estuary in east central Florida. Factors associated with ecosystem degradation are complex, including climate and land use change. Ecosystem research needs identified by the Millennium Ecosystem Assessment (MA) include the need to: consider the social with the physical; account for dynamism and change; account for complexity; address issues of scale; and focus on ecosystem structure and process. Ecosystems are complex, self-organizing, multi-equilibrial, non-linear, middle-number systems that exist in multiple stable states. Results found are relative to the observation and the frame of analysis, requiring multi-scaled analytical techniques. This study addresses the identified ecosystem research needs and the complexity of the associated factors given these additional constraints. Relativity is addressed through univariate analysis of dissolved oxygen as a measure of the general health of the Northern IRL. Multiple spatial levels are employed to associate social process scales with physical process scales as basin, sub-basins, and watersheds. Scan statistics return extreme value clusters in space-time. Wavelet transforms decompose time-scales of cyclical data using varying window sizes to locate change in process scales in space over time. Wavelet transform comparative methods cluster temporal process scales across space. Combined these methods describe the space-time structure of process scales in a complex ecosystem relative to the variable examined, where the highly localized results allow for connection to unexamined variables.
Identifier: FA00004284 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2014.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Environmental sciences -- Mathematical models
Indian River (Fla. : Lagoon) -- Environmental aspects
Marine ecosystem management -- Florida -- Indian River (Lagoon)
Sustainable development
Wavelets (Mathematics)
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004284
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.