You are here

Experimental evaluation of cement stucco surfacing material (CSSM) removal for reducing particulates in air

Download pdf | Full Screen View

Date Issued:
2015
Summary:
Every year millions of construction workers are exposed to dust in levels that create a hazard to them (Fundukian, 2011). Their environment is contaminated by activities such as cutting, chipping, grinding and sanding building materials. The Occupational Safety and Health Administration (OSHA) refers to this general collection of building materials debris and fine particulates as nuisance dust. Some of the particles in nuisance dust possess properties that make them especially hazardous, such as their shape or specific gravity. It has been found by the Center for Disease Control (CDC) that inhalation of quantities of silica dust above the permissible exposure limit (15.0 mg/m3) causes a deterioration of the outside lining of the lung.This research seeks to limit this exposure by a pretreatment process using acid application and then absorbed moisture content that reduces airborne particulate during the removal of cement stucco surfacing materials. Successful pretreatment would allow removal of CSSM from substrates such that the release of airborne particulates does not exceed the permissible exposure limits (PEL) found in the 29 CFR-Table Z-3 for mining applications (15-mg/m3).
Title: Experimental evaluation of cement stucco surfacing material (CSSM) removal for reducing particulates in air.
281 views
19 downloads
Name(s): Cowan, David, author
Meeroff, Daniel E., Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Civil, Environmental and Geomatics Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2015
Date Issued: 2015
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 224 p.
Language(s): English
Summary: Every year millions of construction workers are exposed to dust in levels that create a hazard to them (Fundukian, 2011). Their environment is contaminated by activities such as cutting, chipping, grinding and sanding building materials. The Occupational Safety and Health Administration (OSHA) refers to this general collection of building materials debris and fine particulates as nuisance dust. Some of the particles in nuisance dust possess properties that make them especially hazardous, such as their shape or specific gravity. It has been found by the Center for Disease Control (CDC) that inhalation of quantities of silica dust above the permissible exposure limit (15.0 mg/m3) causes a deterioration of the outside lining of the lung.This research seeks to limit this exposure by a pretreatment process using acid application and then absorbed moisture content that reduces airborne particulate during the removal of cement stucco surfacing materials. Successful pretreatment would allow removal of CSSM from substrates such that the release of airborne particulates does not exceed the permissible exposure limits (PEL) found in the 29 CFR-Table Z-3 for mining applications (15-mg/m3).
Identifier: FA00004438 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2015
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Air -- Pollution -- United States -- Measurement
Air quality management
Concrete -- Deterioration
Environmental health
Particles -- Environmental aspects
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004438
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004438
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.