You are here

Characterization of Group B Sox genes in the development of Drosophila nervous system.

Download pdf | Full Screen View

Date Issued:
2017
Summary:
Sox proteins all contain a single ~70 amino acid High Mobility Group (HMG) DNA-binding domain with strong homology to that of Sry, the mammalian testisdetermining factor. In Drosophila melanogaster, there are four closely related members of the B group, Dichaete (D), Sox Neuro (Sox N), Sox 21a, and Sox 21b that each exhibit ~90% sequence identity within the HMG domain.The previous study has shown that Dichaete plays a major role in embryonic nervous system development and is expressed in several clusters of neurons in the brain, including intermingled olfactory LNs and central-complex neurons strongly expressed in local interneuron of the olfactory system. However, little is known about the possible expression and functions of the related group B Sox genes in the larval and adult brain. In particular, it is unclear if Sox N may function along with Dichaete in controlling the development or physiology of the adult olfactory system. Our data suggests Sox N potential role in the elaboration of the olfactory circuit formation.
Title: Characterization of Group B Sox genes in the development of Drosophila nervous system.
103 views
14 downloads
Name(s): Singh, Shweta, author
Dawson-Scully, Ken, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Biological Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 129 p.
Language(s): English
Summary: Sox proteins all contain a single ~70 amino acid High Mobility Group (HMG) DNA-binding domain with strong homology to that of Sry, the mammalian testisdetermining factor. In Drosophila melanogaster, there are four closely related members of the B group, Dichaete (D), Sox Neuro (Sox N), Sox 21a, and Sox 21b that each exhibit ~90% sequence identity within the HMG domain.The previous study has shown that Dichaete plays a major role in embryonic nervous system development and is expressed in several clusters of neurons in the brain, including intermingled olfactory LNs and central-complex neurons strongly expressed in local interneuron of the olfactory system. However, little is known about the possible expression and functions of the related group B Sox genes in the larval and adult brain. In particular, it is unclear if Sox N may function along with Dichaete in controlling the development or physiology of the adult olfactory system. Our data suggests Sox N potential role in the elaboration of the olfactory circuit formation.
Identifier: FA00004907 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Drosophila melanogaster--Physiology.
Transcription factors.
Gene expression.
Genetic transcription.
Cell cycle.
Neural stem cells.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004907
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004907
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.