You are here

Fracture and Fatigue Behavior of Geosynthetic Reinforced Asphalt Concrete for Pavement Overlays

Download pdf | Full Screen View

Date Issued:
2017
Summary:
Flexible or asphalt pavements constitute nearly 94% of the 2.7 million miles of existing roadways in the United States. In a typical rehabilitation project, the existing asphalt pavement is milled up to a prescribed depth for removing the near surface distresses such as excessive cracking and rutting, and a new overlay is placed. The average time between resurfacing projects varies depending on the level of pavement deterioration which is significantly accelerated when poor subgrade conditions are encountered. The use of geosynthetic reinforcement within the new asphalt overlay is often perceived as a mitigation strategy that can delay the onset and propagation of reflection cracking, and also control the rutting and differential settlement. However, some mixed reviews about the performance of the geosynthetic reinforced overlays have been reported in the literature. In Phase I of this study, a laboratory investigation was conducted for evaluating the flexural fatigue behavior, permanent deformation response, and fracture characteristics of geogrid reinforced asphalt beam specimens made from a typical overlay material. The laboratory specimens included geogrid as a single-layer inclusion either at the bottom third depth or at the mid height, and as double-layer inclusion, with geogrid placed both at the bottom third and at the middle of the beam. In Phase II, a case study involving geogrid reinforced overlay constructed over a deteriorated pavement underlain by soft subgrade in southeastern Florida was numerically simulated. It was found that the geogrid reinforcement significantly improved the fatigue and fracture properties of the asphalt beams compared to unreinforced specimens. Results from numerical simulation demonstrated that the double reinforced overlay resulted in the minimum tensile stress at the bottom of the asphalt layer (reducing the cracking potential) and minimum vertical strain on the top of the subgrade (reducing the rutting potential), compared to unreinforced or bottom-third reinforced overlays. Accordingly, it is concluded that the double layer reinforcement of asphalt overlays with an appropriate geosynthetic product can be beneficial for the performance and long term preservation of the pavement system when soft soils are encountered.
Title: Fracture and Fatigue Behavior of Geosynthetic Reinforced Asphalt Concrete for Pavement Overlays.
143 views
38 downloads
Name(s): Polidora, Jamie Barbara, author
Sobhan, Khaled, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Civil, Environmental and Geomatics Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 177 p.
Language(s): English
Summary: Flexible or asphalt pavements constitute nearly 94% of the 2.7 million miles of existing roadways in the United States. In a typical rehabilitation project, the existing asphalt pavement is milled up to a prescribed depth for removing the near surface distresses such as excessive cracking and rutting, and a new overlay is placed. The average time between resurfacing projects varies depending on the level of pavement deterioration which is significantly accelerated when poor subgrade conditions are encountered. The use of geosynthetic reinforcement within the new asphalt overlay is often perceived as a mitigation strategy that can delay the onset and propagation of reflection cracking, and also control the rutting and differential settlement. However, some mixed reviews about the performance of the geosynthetic reinforced overlays have been reported in the literature. In Phase I of this study, a laboratory investigation was conducted for evaluating the flexural fatigue behavior, permanent deformation response, and fracture characteristics of geogrid reinforced asphalt beam specimens made from a typical overlay material. The laboratory specimens included geogrid as a single-layer inclusion either at the bottom third depth or at the mid height, and as double-layer inclusion, with geogrid placed both at the bottom third and at the middle of the beam. In Phase II, a case study involving geogrid reinforced overlay constructed over a deteriorated pavement underlain by soft subgrade in southeastern Florida was numerically simulated. It was found that the geogrid reinforcement significantly improved the fatigue and fracture properties of the asphalt beams compared to unreinforced specimens. Results from numerical simulation demonstrated that the double reinforced overlay resulted in the minimum tensile stress at the bottom of the asphalt layer (reducing the cracking potential) and minimum vertical strain on the top of the subgrade (reducing the rutting potential), compared to unreinforced or bottom-third reinforced overlays. Accordingly, it is concluded that the double layer reinforcement of asphalt overlays with an appropriate geosynthetic product can be beneficial for the performance and long term preservation of the pavement system when soft soils are encountered.
Identifier: FA00004962 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Dissertations, Academic -- Florida Atlantic University
Reinforced concrete.
Asphalt pavements.
Geosynthetics.
Pavements--Overlays--Evaluation.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004972
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004962
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.