You are here

3D Reconstruction of Simulated Bridge Pier Local Scour Using Green Laser and HydroLite Sonar.

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
Scour is the process of sediment erosion around bridge piers and abutments due to natural and man-made hydraulic activities. Excessive scour is a critical problem that is typically handled by enforcing design requirements that make the submerged structures more resilient. The purpose of this research is to demonstrate the feasibilities of the Optical- Based Green Laser Scanner and HydroLite Sonar in a laboratory setting to capture the 3D profile of simulated local scour holes. The Green Laser had successfully reconstructed a 3D point-cloud imaging of scour profiles under both dry and clear water conditions. The derived scour topography after applying water refraction correction was compared with the simulated scour hole, and was within 1% of the design dimensions. The elevations at the top and bottom surfaces of the 6.5-inch scour hole were -46.6 and -53.11 inches from the reference line at the origin (0,0,0) of the laser scanner. The HydroLite Sonar recorded hydrographical survey points of the scour’s interior surface. The survey points were then processed using MATLAB to obtain a 3D mesh triangulation.
Title: 3D Reconstruction of Simulated Bridge Pier Local Scour Using Green Laser and HydroLite Sonar.
126 views
26 downloads
Name(s): Banyhany, Musab, author
Arockiasamy, Madasamy, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Civil, Environmental and Geomatics Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 117 p.
Language(s): English
Abstract/Description: Scour is the process of sediment erosion around bridge piers and abutments due to natural and man-made hydraulic activities. Excessive scour is a critical problem that is typically handled by enforcing design requirements that make the submerged structures more resilient. The purpose of this research is to demonstrate the feasibilities of the Optical- Based Green Laser Scanner and HydroLite Sonar in a laboratory setting to capture the 3D profile of simulated local scour holes. The Green Laser had successfully reconstructed a 3D point-cloud imaging of scour profiles under both dry and clear water conditions. The derived scour topography after applying water refraction correction was compared with the simulated scour hole, and was within 1% of the design dimensions. The elevations at the top and bottom surfaces of the 6.5-inch scour hole were -46.6 and -53.11 inches from the reference line at the origin (0,0,0) of the laser scanner. The HydroLite Sonar recorded hydrographical survey points of the scour’s interior surface. The survey points were then processed using MATLAB to obtain a 3D mesh triangulation.
Identifier: FA00005995 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Scour at bridges
Sonar
Lasers
Scour at bridges--Evaluation--Technique
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00005995
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.