You are here

Investigation of trapped vortex combustion using hydrogen-rich fuels

Download pdf | Full Screen View

Date Issued:
2011
Summary:
The combustion process of a fuel is a challenging subject when it comes to analyze its performance and resultant emissions. The main task of this study is to optimize the selection of a hydrogen-rich fuel based on its performance and emissions. Computational Fluid Dynamics analysis is performed to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthesis gas. Correlation graphs for the trapped vortex combustor performance and NOx, CO, and CO2 emissions for various types of fuels with different compositions and heat of combustion values were established. Methane, Hydrogen and 10 different syngas fuels were analyzed in this study using computational fluid dynamics numerical method. The trapped vortex combustor that represents an efficient and compact combustor for flame stability was investigated. The TVC consists of a fore body and two after body disks . These components are all encircled with a Pyrex tube. The purpose of the after body disks is to create the vortex wakes that will enhance the combustion process and minimize the NOx emissions. The TVC CFD model was validated by comparing the CFD model results using propane fuel with existing experimental results that were established in Rome, Italy. The static temperature distribution and NOx, CO emissions, combustor efficiency and total pressure drop results of the three dimensional CFD model were similar to the experimental data. Effects of H2/CO and H2/CH4 ratios and the mass fraction of each constituent of syngas fuels and Hydrogen-Methane fuel mixture on the TVC performance and emissions were investigated.
Title: Investigation of trapped vortex combustion using hydrogen-rich fuels.
109 views
16 downloads
Name(s): Zbeeb, Khaled.
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Issued: 2011
Publisher: Florida Atlantic University
Physical Form: electronic
Extent: xx, 142 p. : ill. (some col.)
Language(s): English
Summary: The combustion process of a fuel is a challenging subject when it comes to analyze its performance and resultant emissions. The main task of this study is to optimize the selection of a hydrogen-rich fuel based on its performance and emissions. Computational Fluid Dynamics analysis is performed to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthesis gas. Correlation graphs for the trapped vortex combustor performance and NOx, CO, and CO2 emissions for various types of fuels with different compositions and heat of combustion values were established. Methane, Hydrogen and 10 different syngas fuels were analyzed in this study using computational fluid dynamics numerical method. The trapped vortex combustor that represents an efficient and compact combustor for flame stability was investigated. The TVC consists of a fore body and two after body disks . These components are all encircled with a Pyrex tube. The purpose of the after body disks is to create the vortex wakes that will enhance the combustion process and minimize the NOx emissions. The TVC CFD model was validated by comparing the CFD model results using propane fuel with existing experimental results that were established in Rome, Italy. The static temperature distribution and NOx, CO emissions, combustor efficiency and total pressure drop results of the three dimensional CFD model were similar to the experimental data. Effects of H2/CO and H2/CH4 ratios and the mass fraction of each constituent of syngas fuels and Hydrogen-Methane fuel mixture on the TVC performance and emissions were investigated.
Summary: Moreover, the fuel injector Reynolds number and Lower heating values for Methane, Hydrogen and 10 syngas fuels on the TVC performance and emissions were also investigated. Correlation plots for the NOx, CO and CO2 emissions versus the fuel injector Reynolds number and low heating value were established. These correlation curves can be used as a fair design diagram to optimize the fuel selection process for aerospace and electrical power plant applications.
Identifier: 778874830 (oclc), 3334096 (digitool), FADT3334096 (IID), fau:3813 (fedora)
Note(s): by Khaled Zbeeb.
Thesis (Ph.D.)--Florida Atlantic University, 2011.
Includes bibliography.
Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
Subject(s): Hydrogen as fuel -- Research
Combustion chambers
Vortex-motion
Fluid dynamics
Persistent Link to This Record: http://purl.flvc.org/FAU/3334096
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU