You are here

Developmental and Protective Mechanisms of the Ocular Lens.

Download pdf | Full Screen View

Date Issued:
2016
Summary:
The vertebrate eye lens functions to focus light onto the retina to produce vision. The lens is composed of an anterior monolayer of cuboidal epithelial cells that overlie a core of organelle free fiber cells. The lens develops and grows throughout life by the successive layering of lens fiber cells via their differentiation from lens epithelial cells. Lens developmental defect and damage to the lens are associated with cataract formation, an opacity of the lens that is a leading cause of visual impairment worldwide. The only treatment to date for cataract is by surgery. Elucidating those molecules and mechanisms that regulate the development and lifelong protection of the lens is critical toward the development of future therapies to prevent or treat cataract. To determine those molecules and mechanisms that may be important for these lens requirements we employed high-throughput RNA sequencing of microdissected differentiation statespecific lens cells to identify an extensive range of transcripts encoding proteins expressed by these functionally distinct cell types. Using this data, we identified differentiation state-specific molecules that regulate mitochondrial populations between lens epithelial cells that require the maintenance of a functional population of mitochondria and lens fiber cells that must eliminate their mitochondria for their maturation. In addition, we discovered a novel mechanism for how lens epithelial cells clear apoptotic cell debris that could arise from damage to the lens and found that UVlight likely compromises this system. Moreover, the data herein provide a framework to determine novel lens cell differentiation state-specific mechanisms. Future studies are required to determine the requirements of the identified molecules and mechanisms during lens development, lens defense against damage, and cataract formation.
Title: Developmental and Protective Mechanisms of the Ocular Lens.
93 views
21 downloads
Name(s): Chauss, Daniel C., author
Kantorow, Marc, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Biomedical Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 117 p.
Language(s): English
Summary: The vertebrate eye lens functions to focus light onto the retina to produce vision. The lens is composed of an anterior monolayer of cuboidal epithelial cells that overlie a core of organelle free fiber cells. The lens develops and grows throughout life by the successive layering of lens fiber cells via their differentiation from lens epithelial cells. Lens developmental defect and damage to the lens are associated with cataract formation, an opacity of the lens that is a leading cause of visual impairment worldwide. The only treatment to date for cataract is by surgery. Elucidating those molecules and mechanisms that regulate the development and lifelong protection of the lens is critical toward the development of future therapies to prevent or treat cataract. To determine those molecules and mechanisms that may be important for these lens requirements we employed high-throughput RNA sequencing of microdissected differentiation statespecific lens cells to identify an extensive range of transcripts encoding proteins expressed by these functionally distinct cell types. Using this data, we identified differentiation state-specific molecules that regulate mitochondrial populations between lens epithelial cells that require the maintenance of a functional population of mitochondria and lens fiber cells that must eliminate their mitochondria for their maturation. In addition, we discovered a novel mechanism for how lens epithelial cells clear apoptotic cell debris that could arise from damage to the lens and found that UVlight likely compromises this system. Moreover, the data herein provide a framework to determine novel lens cell differentiation state-specific mechanisms. Future studies are required to determine the requirements of the identified molecules and mechanisms during lens development, lens defense against damage, and cataract formation.
Identifier: FA00004577 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Eye--Diseases--Etiology.
Cell differentiation.
Cellular signal transduction.
Protein folding.
Mitochondrial pathology.
Cellular control mechanisms.
Apoptosis.
Oxidative stress--Prevention.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004577
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.