You are here

Self-Contained Soft Robotic Jellyfish with Water-Filled Bending Actuators and Positional Feedback Control

Download pdf | Full Screen View

Date Issued:
2016
Summary:
This thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated with water from its surroundings by impeller pumps; since the actuators are connected in two neighboring groups of four, the JenniFish has bi-directional movement capabilities. Imbedded resistive flex sensors provide actuator position to the vehicle’s PD controller. Other onboard sensors include an IMU and an external temperature sensor. Quantitative constrained load cell tests, both in-line and bending, as well as qualitative free-swimming video tests were conducted to find baseline vehicle performance capabilities. Collected metrics compare well with existing robotic jellyfish.
Title: Self-Contained Soft Robotic Jellyfish with Water-Filled Bending Actuators and Positional Feedback Control.
512 views
103 downloads
Name(s): Frame, Jennifer, author
Engeberg, Erik, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 131 p.
Language(s): English
Summary: This thesis concerns the design, construction, control, and testing of a novel self-contained soft robotic vehicle; the JenniFish is a free-swimming jellyfish-like soft robot that could be adapted for a variety of uses, including: low frequency, low power sensing applications; swarm robotics; a STEM classroom learning resource; etc. The final vehicle design contains eight PneuNet-type actuators radially situated around a 3D printed electronics canister. These propel the vehicle when inflated with water from its surroundings by impeller pumps; since the actuators are connected in two neighboring groups of four, the JenniFish has bi-directional movement capabilities. Imbedded resistive flex sensors provide actuator position to the vehicle’s PD controller. Other onboard sensors include an IMU and an external temperature sensor. Quantitative constrained load cell tests, both in-line and bending, as well as qualitative free-swimming video tests were conducted to find baseline vehicle performance capabilities. Collected metrics compare well with existing robotic jellyfish.
Identifier: FA00004656 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Adaptive control systems
Artificial intelligence
Autonomous robots
Computational intelligence
Robotics
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004656
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004656
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.