You are here

Oceanic-Atmospheric Influences on Streamflow Extremes & Characteristics in Southeastern United States

Download pdf | Full Screen View

Date Issued:
2016
Summary:
Comprehensive evaluation of changes in streamflow extremes and characteristics due to climate change and variability is the main focus of this study. Available streamflow data at several gaging stations in least anthropologically affected watersheds of the Southeastern Gulf-Atlantic Region, were used for this analysis. To evaluate influences due to climate change, nonparametric trend tests were applied to annual and monthly extremes, while considering seasonality, along with changes in streamflow characteristics. To understand climate variability influences, streamflow data is partitioned in to cool and warm phases of four oceanic and atmospheric oscillations known to have an effect on hydroloclimatology of the region: El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO); Atlantic Multi-decadal Oscillation (AMO); and North Atlantic Oscillation (NAO). Generally, results showed decreasing trends in overall streamflow extremes, as well as spatially varying, temporally non-uniform influences of climate variability on streamflow extremes and characteristics.
Title: Oceanic-Atmospheric Influences on Streamflow Extremes & Characteristics in Southeastern United States.
78 views
15 downloads
Name(s): Carpenter, Andrea, author
Teegavarapu, Ramesh, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Civil, Environmental and Geomatics Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 188 p.
Language(s): English
Summary: Comprehensive evaluation of changes in streamflow extremes and characteristics due to climate change and variability is the main focus of this study. Available streamflow data at several gaging stations in least anthropologically affected watersheds of the Southeastern Gulf-Atlantic Region, were used for this analysis. To evaluate influences due to climate change, nonparametric trend tests were applied to annual and monthly extremes, while considering seasonality, along with changes in streamflow characteristics. To understand climate variability influences, streamflow data is partitioned in to cool and warm phases of four oceanic and atmospheric oscillations known to have an effect on hydroloclimatology of the region: El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO); Atlantic Multi-decadal Oscillation (AMO); and North Atlantic Oscillation (NAO). Generally, results showed decreasing trends in overall streamflow extremes, as well as spatially varying, temporally non-uniform influences of climate variability on streamflow extremes and characteristics.
Identifier: FA00004766 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Atmospheric physics--Statistical models.
Atmospheric thermodynamics.
Fluid dynamics.
Stream measurements.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004766
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004766
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.