You are here

Design of an Aquatic Quadcopter with Optical Wireless Communications

Download pdf | Full Screen View

Date Issued:
2016
Summary:
With a focus on dynamics and control, an aquatic quadcopter with optical wireless communications is modeled, designed, constructed, and tested. Optical transmitter and receiver circuitry is designed and discussed. By utilization of the small angle assumption, the nonlinear dynamics of quadcopter movement are linearized around an equilibrium state of zero motion. The set of equations are then tentatively employed beyond limit of the small angle assumption, as this work represents an initial explorative study. Specific constraints are enforced on the thrust output of all four rotors to reduce the multiple-input multiple-output quadcopter dynamics to a set of single-input single-output systems. Root locus and step response plots are used to analyze the roll and pitch rotations of the quadcopter. Ultimately a proportional integral derivative based control system is designed to control the pitch and roll. The vehicle’s yaw rate is similarly studied to develop a proportional controller. The prototype is then implemented via an I2C network of Arduino microcontrollers and supporting hardware.
Title: Design of an Aquatic Quadcopter with Optical Wireless Communications.
104 views
38 downloads
Name(s): Haller, Patterson, author
Abtahi, Homayoon, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2016
Date Issued: 2016
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 133 p.
Language(s): English
Summary: With a focus on dynamics and control, an aquatic quadcopter with optical wireless communications is modeled, designed, constructed, and tested. Optical transmitter and receiver circuitry is designed and discussed. By utilization of the small angle assumption, the nonlinear dynamics of quadcopter movement are linearized around an equilibrium state of zero motion. The set of equations are then tentatively employed beyond limit of the small angle assumption, as this work represents an initial explorative study. Specific constraints are enforced on the thrust output of all four rotors to reduce the multiple-input multiple-output quadcopter dynamics to a set of single-input single-output systems. Root locus and step response plots are used to analyze the roll and pitch rotations of the quadcopter. Ultimately a proportional integral derivative based control system is designed to control the pitch and roll. The vehicle’s yaw rate is similarly studied to develop a proportional controller. The prototype is then implemented via an I2C network of Arduino microcontrollers and supporting hardware.
Identifier: FA00004786 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2016.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Autonomous robots--Design and construction.
Embedded computer systems--Design and construction.
Wireless communication systems.
Artificial intelligence.
Optical pattern recognition.
Computer vision.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004786
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004786
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.