You are here

Biological Computation: the development of a genomic analysis pipeline to identify cellular genes modulated by the transcription / splicing factor srsf1

Download pdf | Full Screen View

Date Issued:
2017
Summary:
SRSF1 is a widely expressed mammalian protein with multiple functions in the regulation of gene expression through processes including transcription, mRNA splicing, and translation. Although much is known of SRSF1 role in alternative splicing of specific genes little is known about its functions as a transcription factor and its global effect on cellular gene expression. We utilized a RNA sequencing (RNA-¬‐Seq) approach to determine the impact of SRSF1 in on cellular gene expression and analyzed both the short term (12 hours) and long term (48 hours) effects of SRSF1 expression in a human cell line. Furthermore, we analyzed and compared the effect of the expression of a naturally occurring deletion mutant of SRSF1 (RRM12) to the full-¬‐length protein. Our analysis reveals that shortly after SRSF1 is over-¬‐expressed the transcription of several histone coding genes is down-¬‐regulated, allowing for a more relaxed chromatin state and efficient transcription by RNA Polymerase II. This effect is reversed at 48 hours. At the same time key genes for the immune pathways are activated, more notably Tumor Necrosis Factor-¬‐Alpha (TNF-¬‐α), suggesting a role for SRSF1 in T cell functions.
Title: Biological Computation: the development of a genomic analysis pipeline to identify cellular genes modulated by the transcription / splicing factor srsf1.
85 views
16 downloads
Name(s): Clark, Evan, author
Asghar, Waseem, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 75 p.
Language(s): English
Summary: SRSF1 is a widely expressed mammalian protein with multiple functions in the regulation of gene expression through processes including transcription, mRNA splicing, and translation. Although much is known of SRSF1 role in alternative splicing of specific genes little is known about its functions as a transcription factor and its global effect on cellular gene expression. We utilized a RNA sequencing (RNA-¬‐Seq) approach to determine the impact of SRSF1 in on cellular gene expression and analyzed both the short term (12 hours) and long term (48 hours) effects of SRSF1 expression in a human cell line. Furthermore, we analyzed and compared the effect of the expression of a naturally occurring deletion mutant of SRSF1 (RRM12) to the full-¬‐length protein. Our analysis reveals that shortly after SRSF1 is over-¬‐expressed the transcription of several histone coding genes is down-¬‐regulated, allowing for a more relaxed chromatin state and efficient transcription by RNA Polymerase II. This effect is reversed at 48 hours. At the same time key genes for the immune pathways are activated, more notably Tumor Necrosis Factor-¬‐Alpha (TNF-¬‐α), suggesting a role for SRSF1 in T cell functions.
Identifier: FA00004858 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Gene expression.
Computational biology.
Markov processes.
Bioinformatics.
Genetic engineering.
Molecular biology.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004858
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004858
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.