You are here

Which Way is It? Spatial Navigation and the Genetics of Head Direction Cells

Download pdf | Full Screen View

Date Issued:
2017
Summary:
From locating a secure home, foraging for food, running away from predators, spatial navigation is an integral part of everyday life. Multiple brain regions work together to form a three-dimensional representation of our environment; specifically, place cells, grid cells, border cells & head direction cells are thought to interact and influence one another to form this cognitive map. Head direction (HD) cells fire as the animal moves through space, according to directional orientation of the animal’s head with respect to the laboratory reference frame, and are therefore considered to represent the directional sense. Interestingly, inactivation of head direction cell-containing brain regions has mixed consequences on spatial behavior. Current methods of identifying HD cells are limited to in vivo electrophysiological recordings in a dry-land environment. We first developed a dry-land version of the MWM in order to carry out behavioral-recording paired studies. Additionally, to learn about HD cells function we quantified expression of neuronal activation marker (c-Fos), and L-amino acid transporter 4 (Lat4) in neurons found within the HD cell dense anterodorsal thalamic nucleus (ADN) in mice after exploratory behavior in an open field, or forward unidirectional movement on a treadmill. We hypothesize that the degree to which ADN neurons are activated during exploratory behavior is influenced by the range of heading directions sampled. Additionally, we hypothesize that c-Fos and Lat4 are colocalized within ADN neurons following varying amounts of head direction exposure. Results indicate that following free locomotion of mice in an open field arena, which permitted access to 360° of heading, a greater number of ADN neurons express c-Fos protein compared to those exposed to a limited range of head directions during locomotion in a treadmill. These findings suggest that the degree of ADN neuronal activation was dependent upon the range of head directions sampled. We observed a high degree of colocalization of c-Fos and Lat4 within ADN suggesting that Lat4 may be a useful tool to manipulate neuronal activity of HD cells. Identifying genetic markers specific to ADN helps provide an essential understanding of the spatial navigation system, and supports development of therapies for cognitive disorders affecting navigation.
Title: Which Way is It? Spatial Navigation and the Genetics of Head Direction Cells.
125 views
21 downloads
Name(s): Lora, Joan C., author
Stackman, Robert W., Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Psychology
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 140 p.
Language(s): English
Summary: From locating a secure home, foraging for food, running away from predators, spatial navigation is an integral part of everyday life. Multiple brain regions work together to form a three-dimensional representation of our environment; specifically, place cells, grid cells, border cells & head direction cells are thought to interact and influence one another to form this cognitive map. Head direction (HD) cells fire as the animal moves through space, according to directional orientation of the animal’s head with respect to the laboratory reference frame, and are therefore considered to represent the directional sense. Interestingly, inactivation of head direction cell-containing brain regions has mixed consequences on spatial behavior. Current methods of identifying HD cells are limited to in vivo electrophysiological recordings in a dry-land environment. We first developed a dry-land version of the MWM in order to carry out behavioral-recording paired studies. Additionally, to learn about HD cells function we quantified expression of neuronal activation marker (c-Fos), and L-amino acid transporter 4 (Lat4) in neurons found within the HD cell dense anterodorsal thalamic nucleus (ADN) in mice after exploratory behavior in an open field, or forward unidirectional movement on a treadmill. We hypothesize that the degree to which ADN neurons are activated during exploratory behavior is influenced by the range of heading directions sampled. Additionally, we hypothesize that c-Fos and Lat4 are colocalized within ADN neurons following varying amounts of head direction exposure. Results indicate that following free locomotion of mice in an open field arena, which permitted access to 360° of heading, a greater number of ADN neurons express c-Fos protein compared to those exposed to a limited range of head directions during locomotion in a treadmill. These findings suggest that the degree of ADN neuronal activation was dependent upon the range of head directions sampled. We observed a high degree of colocalization of c-Fos and Lat4 within ADN suggesting that Lat4 may be a useful tool to manipulate neuronal activity of HD cells. Identifying genetic markers specific to ADN helps provide an essential understanding of the spatial navigation system, and supports development of therapies for cognitive disorders affecting navigation.
Identifier: FA00004931 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Psychobiology.
Spatial behavior in animals.
Mice as laboratory animals.
Navigation--Psychological aspects.
Computational intelligence.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004931
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004931
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.