You are here

Coupled Effect of Geosynthetics and Randomly Distributed Fibers on the Stability of Reinforced Slopes

Download pdf | Full Screen View

Date Issued:
2019
Summary:
The coupled effect of using geosynthetic reinforcement and randomly distributed fibers on the stability of slopes was evaluated using finite element modeling and limit equilibrium methods by analyzing a case study in Oslo, Norway. The main objective was to simulate the failure condition of the original slope and quantify the improved stability of a hypothetical reinforced slope constructed with geosynthetic layers and distributed discrete fibers. The stability of the slope was evaluated in both the short-term condition with its' undrained shear strength parameters, and the long-term drained condition. Results indicate that the combination of the techniques was found to have a possible increase of about 40% in the short-term condition and about 60% in the long-term condition of the factor safety associated with the slope.
Title: Coupled Effect of Geosynthetics and Randomly Distributed Fibers on the Stability of Reinforced Slopes.
99 views
72 downloads
Name(s): Martins, Caique, author
Sobhan, Khaled, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Graduate College
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 120 p.
Language(s): English
Summary: The coupled effect of using geosynthetic reinforcement and randomly distributed fibers on the stability of slopes was evaluated using finite element modeling and limit equilibrium methods by analyzing a case study in Oslo, Norway. The main objective was to simulate the failure condition of the original slope and quantify the improved stability of a hypothetical reinforced slope constructed with geosynthetic layers and distributed discrete fibers. The stability of the slope was evaluated in both the short-term condition with its' undrained shear strength parameters, and the long-term drained condition. Results indicate that the combination of the techniques was found to have a possible increase of about 40% in the short-term condition and about 60% in the long-term condition of the factor safety associated with the slope.
Identifier: FA00013236 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Geosynthetics
Slope stability
Shear strength of soils
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013236
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.