You are here

Models and Implementations of Online Laboratories; A Definition of a Standard Architecture to Integrate Distributed Remote Experiments

Download pdf | Full Screen View

Date Issued:
2019
Abstract/Description:
Hands-on laboratory experiences are a key part of all engineering programs. Currently there is high demand for online engineering courses, but offering lab experiences online still remain a great challenge. Remote laboratories have been under development for more than 20 years and are part of a bigger category, called online laboratories, which includes also virtual laboratories. Development of remote laboratories in academic settings has been held back because of the lack of standardization of technology, processes, operation and their integration with formal educational environments. Remote laboratories can be used in educational settings for a variety of reasons, for instance, when the equipment is not available in the physical laboratory; when the physical laboratory space available is not sufficient to either set up the experiments or permit access to all on-site students in the course; or when the teacher needs to provide online laboratory experiences to students taking courses via distance education. This dissertation proposes a new approach for the development and deployment of online laboratories over online platforms. The research activities performed include: The design and implementation of an architecture of a system for Smart Adaptive Remote Laboratories (SARL) integrated to educational environments to improve the remote laboratory users experience through the implementation of a modular architecture and the use of context information about the users and laboratory activities; the design pattern and implementation for the Remote Laboratory Management System (RLMS); the definition and implementation of an xAPI-based activity tracking system for online laboratories with support for both centralized and distributed architectures of Learning Record Stores (LRS); the definition of Smart Laboratory Learning Object (SLLO) capable of being integrated in different educational environments, including the implementation of a Lab Authoring module; and finally, the definition of a reliability model to detect and report failures and possible causes and countermeasures applying ruled based systems. The architecture proposed complies with the just approved IEEE 1876 Standard for Networked Smart Learning for Online Laboratories and supports virtual, remote, hybrid and mobile laboratories. A full set of low-cost online laboratory experiment stations were designed and implemented to support the Introduction to Logic Design course, providing true hands-on lab experience to students through the a low-cost, student-built mobile laboratory platform connected via USB to the SARL System. The SARL prototype have been successfully integrated to a Virtual Learning Environment (VLE) and a variety of configurations tested that can support privacy and security requirements of different stakeholders. The prototype online laboratory experiments developed have contributed and been featured in IEEE 1876 standard, as well as been integrated into an Industry Connections Actionable Data Book (ADB) that was featured in the Frankfurt Book Fair in 2017. SARL is being developed as the infrastructure to support a Latin American and Caribbean network of online laboratories.
Title: Models and Implementations of Online Laboratories; A Definition of a Standard Architecture to Integrate Distributed Remote Experiments.
138 views
53 downloads
Name(s): Zapata Rivera, Luis Felipe, author
Larrondo Petrie, Maria M., Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2019
Date Issued: 2019
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 204 p.
Language(s): English
Abstract/Description: Hands-on laboratory experiences are a key part of all engineering programs. Currently there is high demand for online engineering courses, but offering lab experiences online still remain a great challenge. Remote laboratories have been under development for more than 20 years and are part of a bigger category, called online laboratories, which includes also virtual laboratories. Development of remote laboratories in academic settings has been held back because of the lack of standardization of technology, processes, operation and their integration with formal educational environments. Remote laboratories can be used in educational settings for a variety of reasons, for instance, when the equipment is not available in the physical laboratory; when the physical laboratory space available is not sufficient to either set up the experiments or permit access to all on-site students in the course; or when the teacher needs to provide online laboratory experiences to students taking courses via distance education. This dissertation proposes a new approach for the development and deployment of online laboratories over online platforms. The research activities performed include: The design and implementation of an architecture of a system for Smart Adaptive Remote Laboratories (SARL) integrated to educational environments to improve the remote laboratory users experience through the implementation of a modular architecture and the use of context information about the users and laboratory activities; the design pattern and implementation for the Remote Laboratory Management System (RLMS); the definition and implementation of an xAPI-based activity tracking system for online laboratories with support for both centralized and distributed architectures of Learning Record Stores (LRS); the definition of Smart Laboratory Learning Object (SLLO) capable of being integrated in different educational environments, including the implementation of a Lab Authoring module; and finally, the definition of a reliability model to detect and report failures and possible causes and countermeasures applying ruled based systems. The architecture proposed complies with the just approved IEEE 1876 Standard for Networked Smart Learning for Online Laboratories and supports virtual, remote, hybrid and mobile laboratories. A full set of low-cost online laboratory experiment stations were designed and implemented to support the Introduction to Logic Design course, providing true hands-on lab experience to students through the a low-cost, student-built mobile laboratory platform connected via USB to the SARL System. The SARL prototype have been successfully integrated to a Virtual Learning Environment (VLE) and a variety of configurations tested that can support privacy and security requirements of different stakeholders. The prototype online laboratory experiments developed have contributed and been featured in IEEE 1876 standard, as well as been integrated into an Industry Connections Actionable Data Book (ADB) that was featured in the Frankfurt Book Fair in 2017. SARL is being developed as the infrastructure to support a Latin American and Caribbean network of online laboratories.
Identifier: FA00013282 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2019.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Remote laboratories
Online laboratories
Engineering Education
Software architecture
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013282
Use and Reproduction: Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.